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ABSTRACT 

This paper investigates the MHD flow and heat transfer of an electrically conducting non-newtonian power-law 

fluid over a non-linearly stretching surface along with porous plate in porous medium.  The governing equations 

are reduced to non-linear ordinary differential equations by means of similarity transformations. These 

equations are then solved numerically with the help ofRunge – Kutta shooting method. The effect of various 

flow parameters in the form of dimensionless quantities on the flow field are discussed and presented 

graphically. 
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I. Introduction : 
The study of non-newtonian fluid flows hasthe 

gained considerable interest for their numerous 

engineering applications. Details of the behavior of 

non-newtonian fluid for both steady and unsteady 

flow situations along with mathematical models can 

be found in the books by Astarita and 

Marrucci[1].Over recent years, applications of non-

newtonian fluids in many industrial processes have 

been increasing. Many particulate slurries, 

multiphase mixtures, pharmaceutical 

formulations,cosmetics and 

toiletries,paints,biological fluids and food items are 

examples of non- Newtonian fluids.The study of 

hydrodynamics flow and heat transfer over a 

stretching sheet may find its applications in polymer 

technology related to the stretching of plastic 

sheets.T.Sarpakaya[2]studied flow on non-newtonian 

fluids in a magnetic field. K.B.Pavolov[3]examined 

the Magneto-Hydrodynamic flow of an 

Incompressible viscous fluid caused by deformation 

of a plan surface.H.I.Andersson,K.H.Bech and 

B.S.Dandapat[4]described Magneto-Hydrodynamic 

flow of a power-law fluid over a stretching 

sheet.R.Cortell[5]described a note on MHD flow of a 

power-law fluid over a stretching 

sheet.A.A.Mutlag,Md.Jasminuddin,A.I.Md.Ismail 

and M.A.A.Hamad[6]described Scaling group 

Transformation under the effect of Thermal radiation 

Heat Transfer of a non-newtonian power-law fluid 

over a vertical stretching sheet with momentum slip 

boundary condition. The problem of dissipation 

effects on MHD non-linear flow and heat transfer 

past a porous surface with prescribed heat flux have 

been studied by S.P.Anjalidevi and B.Ganga[7]. The 

effect of viscous and joules dissipation on MHD flow 

, heat and mass transfer past stretching porous surface 

embedded in porous medium  was studied by 

S.P.Anjalidevi and B.Ganga[8]. P.K.Singh and Jai 

singh[9] examined the MHD flow with viscous 

dissipation and chemical reaction over a stretching 

porous plate in porous medium. R.Cortell[10] 

described viscous flow and heat transfer over a non-

linearly stretching sheet. More 

recently,KerehalliVinayaka Prasad, 

SeetharamanRajeswarisanthi and 

PampannaSomannaDatti[11]examined the effect of 

variable thermal conductivity on the power-law fluid 

flow and heat transfer over a non-linearly stretching 

sheet in the presence of a transverse magnetic field. 

Motivated by these analyses and practical 

applications, the main concern of the present paper is 

to study the effect of variable thermal conductivity on 

the power-law fluid flow and heat transfer over a 

non-linearly stretching sheet along with porous plate 

in porous medium in the presence of a transverse 

magnetic field. This extends the work in [11]. The 

obtain similarity equations were solved numerically 

to show the effects of the governing parameters. 

 

II. Nomenclature 

A - constant 

0B - uniform magnetic field 

b - stretching rate, positive constant 

fC - skin friction 

f  - dimensionless stream function 

( )h x  - heat transfer co-efficient 

k  - thermal conductivity 

K  - consistency co-efficient 
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m  - velocity exponent parameter 

Mn - magnetic parameter 

n  - power-law index 

xNu -Nusselt number 

Npr - modified Prandtl number 

xNpe - Peclet number 

wq - local heat flux at the sheet 

p -pressure 

Re x -local Reynolds number 

r -temperature exponent parameter 

T -fluid temperature 

 wT x -temperature of the stretching sheet 

T - ambient temperature 

u -velocity in x direction 

v - velocity in y direction 

 U x - velocity of the stretching sheet 

sQ -temperature-dependent volumetric rate of heat 

source 

pc - specific heat at constant pressure 

 -thermal diffusivity 

 -heat source/sink parameter 

cv -kinematic viscosity 

 -permeability parameter 

 - similarity variable 

0 -magnetic permeability 

 -Stream function 

 - density 

 - electrical conductivity 

 - dimensionless temperature 

 

III. Mathematical  Formulation 
Let us consider the case of a steady two-

dimensional flow and heat transfer of a non-

newtonian power –law fluid over a non -linear 

stretching sheet. We consider the effect of porous 

plate in porous medium. Further a Cartesian co-

ordinate system( x , y ) is used where x  and y  are 

co-ordinates measured along and normal to the 

surface, respectively. The continuous stretching sheet 

is assumed to have a non-linear velocity and 

prescribed temperature of the form ( ) mU x bx and

rT Ax  respectively, where b is the stretching 

constant, x  is the distance from the slot; A  is a 

constant whose value depends upon the properties of 

the fluid.  Here m  and r  are the velocity and 

temperature exponents,respectively. Here we neglect 

the induced magnetic field, which is small in 

comparison with the applied magnetic field.  Further 

the external electrical field is assumed to be zero.  

Under these assumptions the basic equations 

governing the flow and heat transfer in usual 

notations are 

0
u v

x y

 
 

 
   (3.1) 

1 2

0

n

u v u B
u v u u

x y y y K

 






    
     

    
 

    (3.2) 

 
2

2

S

P

T T T Q
u v T T

x y y c





  
   

  
 (3.3) 

Where u  and v  are the flow velocity components 

along the x and y -axes respectively,   is the 

kinematic viscosity of the fluid,  -consistency of 

the fluid, n  is the power-law index,   is the fluid 

density and Pc  is the specific heat at constants 

pressure. 

The first term in the right hand side of the 

equation (3.2) is the shear rate  u
x




 has been 

assumed to be negative throughout the boundary 

layer since the stream wise velocity component u  

decreases monotonically with the distance y  from 

the moving surface(for continuous stretching 

surface). The flow is driven solely by the stretching 

surface, which moves with a prescribed velocity

 U x . T is the temperature of the fluid and   is 

the thermal diffusivity of the fluid. The last term 

containing SQ  in equation (3.3) represents the 

temperature dependent volumetric rate of heat source 

when 0SQ   and heat sink when 0SQ  . Thus the 

appropriate boundary conditions are 

   ,0u x U x ,  (3.4) 

 ,0 0v x  ,   (3.5) 

   ,0 wT x T x ,  (3.6) 

   , 0, ,u x y T x y T  as y   (3.7) 

Here, boundary condition (3.4) assures no slip at the 

surface and equation (3.5) signifies the importance of 

impermeability of the stretching surface. Equation 

(3.6) is the variable prescribed surface temperature at 

the wall whereas the equation (3.7) means that the 

stream velocity and the temperature vanish outside 

the boundary layer. In order to obtain the similarity 

solutions of equations (3.1) - (3.7), we assume that 

the variable magnetic field  0B x  is of the form 
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 0B x =
 1

2
0

m

B x


.  The momentum and energy 

equations can be transformed to the corresponding 

ordinary differential equations by the following 

transformations ([11]) 

   
1

1Re ,n
x

w

y T T

x T T
   




 


 (3.8) 

     
1

1, Re ,n
xx y Ux f 



  (3.9) 

 Where  is the similarity variable,  ,x y  is the 

stream function f  and   are the dimensionless 

similarity function and temperature, respectively.  

The velocity components u  and v  given by 

u
y





,   v
x


 


  (3.10) 

The local Reynolds number is defined by 
2

Re
n n

x

U x





    (3.11) 

The mass conservation equation (3.1) is 

automatically satisfied by equation (3.10). By 

assuming the similarity function  f   to depend on 

the similarity variable , the momentum 

equation(3.2) and the heat equation (3.3) transform 

into the coupled non-linear ordinary differential 

equation of the form 

   
1 2 12 1

'' ''' ' '' ' 0
1

n mn m
n f f mf ff Mn f

n


   
      

 
  (3.12) 

 '' ' '2 1
0

1

mn m
Npr f Npr rf

n
   

  
    

 
    (3.13) 

The boundary conditions(3.4) – (3.7) now becomes 

     '0, 1, 1, 0f f at        (3.14) 

   ' 0, 0f     as (3.15) 

Where 
2

0Mn B b    is the magnetic parameter,

Kb  is the permeability parameter, 

 
2

1Re n
x xNpr Npe  is the modified Prandtl 

number for power – law fluids, x pNpe c Ux   

is the convectional Peclet number[11],

s pQ c b   is the heat source/sink parameter. 

Here primes denote the differentiation with 

respective to . 

 The physical quantities of interest are the 

skin-friction coefficient fC  and the local Nusselt 

number xNu , which are defined as 

2

2 w
fC

U




  ,   

 
w

x

w

xq
Nu

k T T




(3.16) 

respectively, where the wall shear stress w  and heat 

transfer from the sheet wq  are given by 

0

0

w

aty

u

y
 



 
  

  0

, w

aty

T
q

y




 
   
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 (3.17) 

with 0  and   being the dynamic viscosity and 

thermal conductivity, respectively. Using the non-

dimensional variable (2.7), we obtain 

 
   

1
''

1
2

0

2
2 0 Re

nxy
n

f x

y

C f
bx











 
       

 

 

    (3.18)  

   
1

'
1Re 0n

x xNu 


  ,where xy  is the shear 

stress and Re x is the local Reynolds number. 

 

IV. Results and Discussion 
The ordinary differential equations(3.12)-(3.13) 

with the boundary conditions(3.14)-(3.15)have been 

solved by Runge-kutta shooting method. Numerical 

results are obtained to study the effect of the various 

non-dimensional parameters namely, the magnetic 

parameters Mn  permeability parameter  , the 

velocity exponent parameter m  and the temperature 

exponent parameter r ,the modified Prandtl number 

Npr  and the heat source/sink parameter  on the 

flow and heat transfer are shown graphically in the 

Figures 1-9. 

Figures (1(a)-(c)) respectively, depict the effect 

of shear thinning  1n  , newtonian  1n  and 

shear thickening  1n  fluids on the horizontal 

velocity profiles 'f  with  ,for different values of 

velocity exponent parameter m and magnetic 

parameter Mn and constant permeability parameter 

 . The effect of flattering of horizontal velocity as a 

consequence of increasing the strength of the 

magnetic field is observed for all values of velocity 

exponent parameter m . The effect of increasing 

values of the velocity exponent parameter m  is to 
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reduce the momentum boundary layer thickness, 

which tends to zero as the space variable   increases 

from the boundary surface. Physically, 0m   

implies that the surface is decelerated from the slot, 

0m   the continuous movement of a flat surface, 

and 0m   implies the surface is accelerated from 

the extruded slit.  

Horizontal velocity profiles 'f decreases and 

disclosing the fact that the effect of stretching of the 

exponent parameter m  from negative values to 

positive values is to decelerate the velocity and hence 

reduces the momentum boundary layer thickness. 

Further it is observed from these,Figures ((1(a)-1(c)) 

that the horizontal velocity profiles 'f decrease with 

increasing values of power-law index n . 

Figures 2((a)-(c)) respectively demonstrates the 

horizontal velocity profiles for different values of 

permeability parameter    in the presence/absence 

of magnetic parameter Mn . It is observed that the 

velocity of the fluid increases as permeability 

parameter increases. 

Figures 3((a)-(c)) respectively demonstrates the 

temperature profiles for different values of 

permeability parameter    in the presence/absence 

of magnetic parameter Mn . It is observed that the 

temperature of the fluid decreases as permeability 

parameter increases. 

Figures 4((a)-(c)) respectively depicts 

temperature profiles for different values of velocity 

exponent parameter  m  in the presence/absence of 

magnetic parameter Mn . The effect of increasing 

values of velocity exponent parameter  m  is to 

decrease the temperature profiles. 

Figures 5((a)-(c)) shows respectively, the shear  

thinning, Newtonian and shear thickening fluids on 

the temperature profiles     for different values of 

temperature exponent parameter r  and velocity 

exponent parameter m  in presence of magnetic 

parameter Mn . It is seen that the temperature of the 

fluid decrease as temperature exponent parameter r  

increases. The same result is obtained for absence of 

magnetic field also. 

Figures 6((a)-(c)) demonstrates the temperature 

profiles for several sets of values of the modified 

Prandtle number Npr  in the absence/presence of 

magnetic parameter Mn for shear  thinning, 

Newtonian and shear thickening fluids. It is clear that 

the temperature of the fluid decreases asPrandtle 

numberincreases. 

Fig7((a)-(c)) shows respectively , the shear 

thinning, Newtonian and shear thickening fluids  on 

the temperature profiles  for different values of heat 

source/sink parameter  in the presence of magnetic 

field Mn . It is clear that temperature profiles 

increases as heat source/sink parameter 
increases.The same result is obtained for absence of 

magnetic field also. 
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1(c) 

Fig.1.Non dimensional velocity profiles for different values of stretching parameter m  
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Fig.2.Non dimensional velocity profiles for different values of  with presence/absence of magnetic field Mn  
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3(a)                                                                           3(b) 

 
3(c) 

Fig.3.Effect of temperature distribution for different values of  with presence/absence of magnetic parameter  
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4(c) 

Fig.4.Effect of stretching parameter m  over temperature distribution 
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Fig.5.Temperature profiles for different values of stretching parameter m and wall temperature r with 1Mn   
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0Mn  ,                        1Mn   

 
6(a)     6(b) 

  
6(c) 

Fig.6.Temperature profiles for different values of modified Prandtle number Npr
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7(c) 

Fig.7.Temperature profiles  for different values of  and wall temperature parameter ( r ) with 1Mn   

 

V. Conclusions: 
 The effect of increasing values of velocity 

exponent parameter m  is to reduce the 

horizontal velocity. 

 The increasing values of magnetic parameter 

Mn results in flattering the horizontal velocity 

profiles and increase the temperature profiles. 

 The effectsofPermeability parameter is to 

increase the velocity profiles and decrease the 

temperature profiles. 

 The effect of modified Prandtl number Npr is to 

decrease the wall temperature gradient. 

 The internal heat source/sink parameter 
increases the temperature profiles. 
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